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of  t h e  gas i s  assumed t o  be gray. The problem is formulated f o r  t h e  flow 

about a b l u n t  body b u t  t h e  d e t a i l e d  c a l c u l a t i o n s  are c a r r i e d  o u t  for  t h e  

s t agna t ion  region i n  o r d e r  t o  i l l u s t r a t e  t h e  techniques used. Rad ia t ive  

coo l ing  decreases t h e  convective h e a t  t r a n s f e r  from t h e  corresponding 

r a d i a t i o n l e s s  case. The a d d i t i o n a l  con t r ibu t ions  t o  t h e  h e a t  t r a n s f e r  due 

t o  r a d i a t i v e  transfer come from both t h e  shock s t r u c t u r e  and t h e  shock 

l aye r .  The r e l a t i v e  importance of t h e s e  c o n t r i b u t i o n s  are a s s e s s e d  i n  

terms of t h e  r a r e f a c t i o n  parameter. Radia t ive  c o n t r i b u t i o n s  become less 

important toward t h e  free-molecular range. Rad ia t ive  coo l ing  dec reases  

t h e  o v e r a l l  shock s t r u c t u r e  and shock l a y e r  th icknesses .  
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Nomenclature 

a 

a ,b 

C 

cH 

p scv C 

H 

31 9 92 

K 2  

I 

k 

P r  

P 

Q 

9, 

R 
q 

R 

Reb 

T 

u,v 

= nose r ad ius  

= see Eq. (3.3a) 

= see Eq. (3.3a) 

= qJomUa(Hm-H 1, h e a t  t r a n s f e r  c o e f f i c i e n t :  C C ~  - convect ive,  
W 

Ci - r a d i a t i v e ,  C:'sL- r a d i a t i v e ,  from shock l a y e r ,  C;,STZ - 
r a d i a t i v e ,  from shock t r a n s i t i o n  zone 

= s p e c i f i c  h e a t  a t  cons tan t  pressure and a t  cons tan t  volume, 

r e spec t ive ly  

1 = c T + -  
P 2  

= see Eq. 

= see Eq. 

= EP,U,a/i 

= (2Pr/3)  

2 2  u +v ), t o t a l  enthalpy 

(3.27) 

(3.28) 

9' 

{[(4/K2) + 1I1I2 - ll-', 

rare f act ion parameter 

also thermal  conduct iv i ty  

= Cpv/k, P m n d t l  number 

= pressure  

= r a d i a t i v e  energy loss p e r  u n i t  mass 

= rate of energy t r a n s f e r r e d  t o  body su r face  ( p e r  u n i t  t i m e  and p e r  

u n i t  area) 

= r a d i a t i v e  energy flux 

= gas cons t an t  

= P,Uma/vo, body Reynolds number 

= temperature 

= v e l o c i t y  components i n  the x,y d i r e c t i o n s ,  r e s p e c t i v e l y  
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x,y = orthogonal  coord ina tes  a long  and normal t o  r e fe rence  s u r f a c e  

(see Fig. 2 )  

= free-stream v e l o c i t y  
OD 

U 

Z = d i s t ance  of r e fe rence  su r face  from a x i s  of symmetry 

0 = absorp t ion  c o e f f i c i e n t  

B = angle  between re ference  surface and free-stream d i r e c t i o n  

r = r a d i a t i v e  energy emission t o  energy convection r a t i o  

[see Eq. ( 3 . 9 ) l  

= c /c h e a t  capac i ty  r a t i o ;  a l s o  incomplete gamma func t ion  
P v’ Y 

[see Eq.  (3.2813 

€ = (y-l)/2y 

5 

= (3/4) Reb s inB (p0/p) d(y /a )  
- 
rl 

0 = (H-Hw)/(Hm-Hw), dimensionless en tha lpy  func t ion  

= dimensionless en tha lpy  func t ion  f o r  r a d i a t i o n l e s s  case 

K = mass absorp t ion  coefficient 

K = dB/dx, l o g i t u d i n a l  curva ture  of r e f e r e n c e  su r face  

IJ = v i scos i ty  c o e f f i c i e n t  

5 = x /a  

n = 3.1416 

C 

P = densi ty  

0 = Stephen-Boltzmann cons t an t  

JI = stream funct ion  
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Subscr ip ts  

0 = s t a g n a t i o n  cond i t ion  i n  t h e  free stream 

I,= = condi t ions  i n  f r o n t  o f  t h e  shock and i n  t h e  free stream, 

r e s p e c t i v e l y  

2,s = condi t ions  behind t h e  shock 

W = body s u r f a c e  condi t ions  
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1. Int roduct ion  

The s tudy of r a d i a t i v e  energy t r a n s f e r  i n  t h e  hypersonic  f l o w  over  

blunt-nosed bodies is  r e l e v a n t  t o  t h e  design of e n t r y  veh ic l e s  i n  a 

f l i g h t  regime i n  which t h e  cons idera t ion  of such an energy t r a n s f e r  

mechanism is important  t o  thermal p ro tec t ion  systems. Recent f l u i d  

mechanical s t u d i e s  of such r a d i a t i n g  flows have, i n  gene ra l ,  f a l l e n  i n t o  

two categories:  

l a y e r s .  

t h e  i n v i s c i d  and the  f u l l y  viscous r a d i a t i n g  shock 

Recently Cheng and Vincenti’ p resented  s o l u t i o n s  for  t h e  i n d i r e c t  

problem of multidimensional,  i n v i s c i d  r a d i a t i n g  flow behind a given 

parabolo ida l  shock wave. A review of t he  var ious  earlier works  on 

i n v i s c i d  r a d i a t i n g  shock l a y e r s  is a l s o  given i n  t h i s  paper.  

2 Howe and Viegas considered a completely v iscous ,  r a d i a t i n g  shock 

l a y e r  i n  the  s t agna t ion  region of a b l u n t  body, using a l o c a l  s i m i l a r i t y  

approach. I n  a series of  papers ,  which conta in  success ive  improvements 

on t h e  r a d i a t i v e  t r a n s f e r  model, absorp t ion  c o e f f i c i e n t  and gas p r o p e r t i e s ,  

Hoshizaki and presented  s o l u t i o n s  for  t h e  d i r e c t  problem of 

5 a viscous ,  r a d i a t i n g  shock l a y e r  by an i n t e g r a l  technique. 

considered the  s t agna t ion  reg ion  of such a shock l a y e r  for  t h e  emission- 

dominated case.  

numbers, and c l a r i f i e d  t h e  r a d i a t i v e  i n t e r a c t i o n  of t h e  viscous boundary 

l a y e r  w i t h  t h e  i n v i s c i d  region.  

l a y e r  s t u d i e s ,  t he  shock wave is considered t o  be i n f i n i t e s i m a l l y  t h i n  

and t h e  usual Rankine-Hugoniot jump cond i t ions  are app l i ed ,  thereby 

6 conf in ing  the  range of v a l i d i t y  up t o  t h e  v iscous- layer  regime. 

Burggraf 

He obta ined  asymptotic expansions for  l a r g e  Reynolds 

In  a l l  t h e s e  v iscous  r a d i a t i n g  shock 
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I n  more r ecen t  s t u d i e s  of t h e  viscous hypersonic  flow over  b l u n t  

7 bodies ,  Bush 

a flow regime i n  which t r a n s p o r t  e f f e c t s  are important  throughout t h e  

shock l a y e r  b u t  no t  important immediately behind t h e  shock wave. 

However, Cheng 

for  numerical  computations i n  the  moderately high Reynolds number range 

corresponding t o  t h e  non l inea r  v o r t i c i t y  i n t e r a c t i o n  regime. 

t h e  viscous l a y e r  model would then e l imina te  t h e  n e c e s s i t y  of matching 

t h e  i n n e r  and outer s o l u t i o n s  and i s  thus  p a r t i c u l a r l y  advantageous 

when more realist ic gas p r o p e r t i e s  a r e  taken i n t o  account. 

and Cheng' both r u l e  out t h e  conceptua l  p o s s i b i l i t y  of 

8 po in t s  ou t  t h e  advantage of using t h e  viscous l a y e r  model 

Use of 

Numerous r ecen t  s t u d i e s ,  then ,  have included t h e  high and moderately- 

However, high Reynolds number ranges of r ad ia t ing  flow over  b l u n t  bodies.  

t h e  l o w  Reynolds number range of r a d i a t i n g  hypersonic  flows is v i r t u a l l y  

unexplored. 

to  desc r ibe  t h e  e s s e n t i a l  f e a t u r e s  of t h e  t r a n s i t i o n  f r o m  continuum t o  

free-molecule flow is w e l l  known. 899e10 I t  i s  thus  n a t u r a l  t o  explore  

t h e  p o s s i b i l i t y  of  extending such an approach t o  r a d i a t i n g ,  l o w  Reynolds 

number hypersonic  f low.  

I n  t h e  flow regime i n  which t r anspor t  effects  are important  i n  t h e  

The a b i l i t y  of t h e  viscous hypersonic  thin-shock l a y e r  theory  

shock l a y e r  and i n  modifying t h e  Rankine-Hugoniot jump condi t ions ,  

t h e  s t a g n a t i o n  en tha lpy  behind t h e  shock s t r u c t u r e  or a t  t h e  o u t e r  edge 

of t h e  shock l a y e r  decrease from t h e  free stream s t agna t ion  value wi th  

dec reas ing  body Reynolds number. 'dl Any pre l iminary  estimate of t h e  

importance of energy t r a n s f e r  by r a d i a t i o n  r e l a t i v e  t o  energy t r a n s f e r  by 

convect ion must t a k e  i n t o  account t h i s  decrease i n  s t agna t ion  enthalpy.  
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From t h e  s tandpoin t  of r a d i a t i v e  h e a t  t r a n s f e r ,  it would thus  be expected 

t h a t  r e l a t i v e l y  h ighe r  f l i g h t  speeds could be t o l e r a t e d  i n  t h e  l o w  

Reynolds number regime. 

This paper p re sen t s  d i scuss ions  of t h e  effect of r a d i a t i v e  t r a n s f e r  

i n  t h e  low Reynolds number hypersonic  flow about  a b l u n t  body. The 

ca l cu la t ions  a r e  s p e c i a l i z e d  t o  t h e  s t agna t ion  reg ion  t o  b e t t e r  i l l u s t r a t e  

t h e  technique used. The r a d i a t i o n  model is  s i m p l i f i e d  t o  t h a t  of t h e  

emission-dominated case. The r a d i a t i o n  parameter f o r  t h i s  case is 

r a ca ,  where r is t h e  r a d i a t i v e  emission t o  energy convection r a t i o ,  

a t h e  absorpt ion c o e f f i c i e n t  and ca g ives  t h e  o r d e r  of t h e  shock 

l a y e r  thickness .  The s u b s c r i p t  o i n d i c a t e s  free-stream s tagna t ion  

0 0  0 

0 

condi t ions .  However, as was previous ly  d iscussed ,  t h e  free-stream 

s tagna t ion  cond i t ions  are no t  a good i n d i c a t i o n  of t h e  importance of 

r a d i a t i v e  transfer because of t h e  "shock-slip" effects. 

r e fe rence  condi t ion  is one based on t h e  cond i t ion  a t  t h e  o u t e r  edRe 

The appropr i a t e  

of t h e  shock l a y e r ,  I' a E a .  A pre l iminary  estimate of t h i s  parameter  

for various va lues  of t h e  r a r e f a c t i o n  parameter ,  K , can be made 

through the use of Cheng's' s o l u t i o n  8 (1). The parameter  r a E a  

is  shown i n  Figure 1, where 

s s  
2 

0 s s  
8 rsaSca q$30(l)I'oaoEa is i n d i c a t e d  by t h e  

.% ,. 
dashed l i nes .  The K2+= l i m i t  occurs  when shock-s l ip  effects are 

absen t  and r a = r a i d e n t i c a l l y .  But for  K2 = O ( l ) ,  f o r  i n s t a n c e ,  

r a E a  can be  as high as l o 2  while  r a E a  i s  only O ( 1 ) .  The t r u e  

va lue  of  r a c a ,  which is n o t  known a p r i o r i  and is obta ined  only 

af ter  t h e  s o l u t i o n  has  been found, is shown by t h e  s o l i d  l i n e s  i n  F igure  

s s  0 0  

0 0  s s  

s s  

4 
s s  "The term a T may be r ep laced  by e:(l)aoT: (see Sec t ion  3 ) .  
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1. 

effects behind t h e  shock wave s t r u c t u r e ,  t he  dashed l i n e s  overes t imate  

t h i s  parameter (as is  evident  from Figure 1). 

Because r a d i a t i v e  t ransfer  augments t he  shock-sl ip  due t o  t r a n s p o r t  

2. Basic Equations 

The b a s i c  equat ions  of t h e  two-thin-layer formulat ion f o r  t h e  des- 

c r i p t i o n  of t h e  (non-rad ia t ing)  low Reynolds number hypersonic  flow 

over  b l u n t  bodies are obta ined  by Cheng. 8'10 

d e s c r i p t i o n  t o  Bush's7 four - layer  formulation is poin ted  o u t  by Cheng. 

The equivalence of t h i s  

8 

I n  t h i s  s e c t i o n  Cheng's two-layer formulat ion w i l l  be  augmented by 

t h e  inc lus ion  o f  t h e  effect of r a d i a t i v e  t r a n s f e r  i n  t h e  energy equat ions .  

This  presupposes t h a t  r a d i a t i v e  transfer w i l l  n o t  a l te r  t h e  order-of- 

magnitude analyses  i n  the  th in- layer  theory.  U l t i m a t e  j u s t i f i c a t i o n  

of  t h i s  assumption must be sought  a p o s t e r i o r i  f r o m  t h e  actual s o l u t i o n s  

obtained.  
.*. n 

Throughout t h i s  paper ,  t h e  s impl i fy ing  assumptions of a p e r f e c t  

gas  having cons t an t  s p e c i f i c  h e a t  and a l i n e a r  v i scos i ty- tempera ture  

l a w  w i l l  be r e t a ined .  I t  w i l l  also be assumed t h a t  t h e  gas ahead of 

t h e  shock s t r u c t u r e  is co ld  and n e i t h e r  absorbing no r  emi t t i ng ,  t h a t  

t h e  o u t  going r a d i a t i o n  escapes t o  i n f i n i t y ,  t h a t  t h e  free stream is 

uniform, and t h a t  t h e  w a l l  is cold.  

free pa th  is l a r g e  compared t o  the  th i ckness  of t h e  shock- t rans i t ion  

If the  smallest l o c a l  photon mean 

3. .. 
I n  fact, for  t h e  r a d i a t i v e  effects i n  t h e  "order-unity" and t h e  "weak" 

regimes,  t h e  th in - l aye r  approximation is made more v a l i d  because of t h e  

decrease  of snock l a y e r  and s h o c k - t r a s i t i s n  zoze thicknesses. 

r a d i a t i o n  case r e q u i r e s  s e p a r a t e  cons idera t ion .  

The s t r o n g  
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zone and of t h e  shock l a y e r ,  then  the  effect  of r a d i a t i o n  can  be repre-  

s en ted  by t h e  emission-dominated case. The gas  is assumed t o  be gray  

with a frequency-averaged absorp t ion  c o e f f i c i e n t  which depends on t h e  

l o c a l  pressure and temperature.  The con t r ibu t ion  of r a d i a t i o n  t o  t h e  

p re s su re  and i n t e r n a l  energy of t h e  gas are neglected.  

2.1 Shock-layer equat ions  

The orthogonal coord ina tes  used are x and y ,  where x is 

t h e  d is tance  along and y t h e  d i s t ance  normal t o  a r e fe rence  su r face .  

Following Cheng’, t h i s  r e fe rence  su r face  is  taken t o  be t h e  o u t e r  edge 

of t h e  shock layer .  (See Figure 2). 

The th in- layer  approximation then  y i e l d s  t h e  fol lowing set  of 

equat ions  f o r  t h e  a x i a l l y  symmetric shock-layer:  

p = pRT 

The r a d i a t i v e  h e a t  loss term, -PQ, is  t h e  energ! 

volume. For t h e  emission-dominated case 

4 
-PQ = - ‘ + p K U T  

and -pQ then has t h e  form of local h e a t  S inks .  

los t  p 

(2.1) 

(2.2) 

(2.4) 

(2.5) 

r u n i t  

(2.6) 



11 

2.2 Shock-transi t ion zone equat ions 

Here y is measured from and normal t o  t h e  o u t e r  edge of t h e  shock 

l a y e r  and x is  t h e  d i s t ance  a long  t h i s  l aye r .  The t h i n - l a y e r  approxima- 

t i o n  then  y i e l d s  t h e  fol lowing s e t  of equat ions  for  t h e  shock- t r ans i t i on  

zone : 

P V  = P l y  (2.7) 

4 av 2 p + p v v - - p- = 11 3 ay pivi (2.8) 

(2.9) 
au 

11 ay 111  p v U-lJ - =  p v u 

2 
(2.10) 4Pr v 2 

U a H  a {L%H - (1-Pr)- - (1- -) -11 -PQ P i v i  = P r  ay 2 3 2  

p = pRT (2.11) 

Equat ions (2.1) through (2.3) are obtained through a s imple i n t e g r a t i o n ,  

whi le  (2.4) remains a second-order d i f f e r e n t i a l  equat ion.  The r a d i a t i v e  

h e a t  loss, -pQ, is  aga in  given by (2.6).  The s u b s c r i p t  1 i n d i c a t e s  

free stream condi t ions ,  where p1 - - P,, u = UWcos$., v1 = -Uwsin$, 

and $ is t h e  local i n c l i n a t i o n  of t h e  r e fe rence  su r face .  

2.3 The unreduced problem 

I n  t h e  nonradia t ing  problem ( i .e . ,  f o r  -pQ = 0) t h e  s e t  of  equat ions  

(2.7) through (2.101, wi th  Eq. (2.10) i n t e g r a t e d  once, can be reduced 

t o  g i v e  a set  of shock conservat ion r e l a t i o n s  t h a t  provide t h e  o u t e r  

boundary cond i t ion  for t h e  shock layer .  

on ly  Eqs. (2.7) through (2.9) may be reduced; such reduct ion  y i e l d s  

8,9.10 In  t h e  p re sen t  problem, 

P2V2 = OIVl (2.12) 
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2 
P2 = P l y  (2.13) 

(2.14) au 

ay 2 
P1Vl(U2 - u,) = (l.l -1 

Here t h e  s u b s c r i p t  2 i n d i c a t e s  t h e  condi t ion  a t  t h e  o u t e r  edge of t h e  

shock l a y e r  where v and av/ay are higher-order  q u a n t i t i e s .  Equations 

(2.12) through (2.14) are t h e  proper  jump condi t ions ,  independent of 

t h e  shock s t r u c t u r e  problem. 

I n t e g r a t i o n  of Eq. (2.10) once across t h e  shock- t rans i t ion  zone 

y i e l d s  3 
L 

2 
- P Q ~ Y  

p v (H -H 1 = { ~ - # H - ( l - P r ) ~ l ~  a 
2 1  11  2 1 (2.15) 

The l a s t  term on t h e  right-hand s i d e  of Eq. (2.14) r e p r e s e n t s  t h e  accumu- 

l a t e d  r a d i a t i v e  h e a t  loss through t h e  shock- t rans i t ion  zone. Because 

of t h i s  history-dependent term, a jump c o n d i t i o n  for t h e  t o t a l  en tha lpy  

is  no longer available. 

descr ibed  independently of t h e  detai ls  of t h e  shock- t rans i t ion  zone. 

The two l a y e r s  are thus  r a d i a t i v e l y  coupled. 

That i s ,  t h e  shock l a y e r  can no l o n g e r  be 

3. Solut ion of t h e  Two Radiatively-Coupled Layers 

Although t h e  r a d i a t i v e  coupl ing of t h e  s h o c k - t r a n s i t i o n  zone t o  t h e  

shock l a y e r  i s  apparent ,  t h e  method of s o l u t i o n  t o  be descr ibed  i n  t h i s  

s e c t i o n  w i l l  adhere t o  t h e  uncoupled, non-rad ia t ing  two-layer formulation. 

Thus, an  at tempt  s h a l l  be made t o  d e r i v e  a "psuedo-jump" c o n d i t i o n  f r o m  

t h e  r a d i a t i n g  shock- t rans i t ion  zone energy equat ion .  

t h e  boundary condi t ion  f o r  t h e  o u t e r  edge of t h e  r a d i a t i n g  shock l a y e r .  

This  would provide 
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However, such a condi t ion  conta ins  the as y e t  unknown cumulative r a d i a t i v e  

h e a t  loss through t h e  shock- t rans i t ion  zone. The s o l u t i o n  of t h e  shock 

l a y e r  energy equat ion ,  using such a psuedo- jump condi t ion ,  would then 

provide the  boundary condi t ion  f o r  the  shock- t r ans i t i on  zone a t  t h e  

in t e r f ace .  An o v e r a l l  i t e r a t i v e  scheme can then  be devised.  

For  a given boundary condi t ion  a t  t h e  shock- in te r face ,  t h e  shock- 

t r a n s i t i o n  zone s o l u t i o n  can be ca l cu la t ed  and t h e  cumulative h e a t  l o s s  

through t h i s  l a y e r  obtained.  For a given cumulative h e a t  l o s s  a t  t h e  

shock i n t e r f a c e ,  t h e  shock l a y e r  s o l u t i o n  can be ca l cu la t ed  and t h e  

boundary condi t ion  for  t h e  shock- t rans i t ion  zone obtained.  The f i n a l  

s o l u t i o n  is obta ined  when consis tency is achieved i n  such a “phase- 

plane”.  

The s o l u t i o n s  f o r  t h e  ind iv idua l  l a y e r s  used i n  t h e  o v e r a l l  i t e r a t i o n  

scheme can be obta ined  by a c t u a l l y  so lv ing  t h e  d i f f e r e n t i a l  equat ions  

appropr i a t e  t o  t h e  r e spec t ive  layers .  However, t h e  technique of  s o l u t i o n  

t o  be descr ibed  below is ,  again,  through i t e r a t i o n .  

3.1 Transformation of  t h e  shock- t r ans i t i on  zone equat ions  

Following ChengBol’, w e  introduce t h e  fol lowing dimensionless 

v a r i a b l e s  for t h e  shock- t r ans i t i on  zone: 

- - - 2 -  u = u/ul, v = v/vl, p = p/plvl , T = “/To (3.1) 

The transformed normal d i s t ance  measured f r o m  t h e  shock i n t e r f a c e ,  y 2 ,  
is 

de f ined  as 

(3.2) 



14 

where Reb = P,U,a/vo. 

The gray  volumetr ic  absorpt ion c o e f f i c i e n t ,  O K  , is  assumed t o  be 

of t h e  form 

a = P K =  Cpa Tb (3 .3a)  

where C ,  a and b are cons tan ts .  For in s t ance ,  Traugot t12 uses 

a = 1, b = 4 and C = 5.37 x sec /p K ,  where p is i n  u n i t s  

of dynes/m2 and T is i n  OK. The dimensionless form of t h e  absorp t ion  

2 0  

- 
c o e f f i c i e n t  a is  then w r i t t e n  

a = a o G )  = ao(p -a Tb) 

where 

a 0 = C ( ~ = U , ~ ) ~  T: 

(3.3b) 

(3.3c) 

is based on free stream s t a g n a t i o n  condi t ions .  

S u b s t i t u t i n g  Eqs. (3.1) through (3.3) i n t o  Eqns. (2.7) through (2.111, 

one obta ins  

a 2  2 4Pr 2 -2 
+g-(l-Pr)cos B ii'-(l- -1 s i n  B v 3 aTi 

an  a n  3 - +  - - 4 P r  

2 e --  
p = ~p T csc B 

The dimensionless t o t a l  en tha lpy  is def ined  as 

(3.4) 

(3.5) 

(3 .6)  

(3 .7)  

(3.8) 
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2 - -  
H = T t c o s  B -2 2 -2 

u t s i n  B v 

The l i n e a r  temperature v i s c o s i t y  law, 

a t  t h e  right-hand s i d e  of Eq. (3.7). 

p = poT/To, is  used t o  a r r i v e  

The radiat ive-emisison t o  convect ion 

ra t io  is def ined  as 
4 4aT 
0 r =  

o P,U,C T 
P O  

(3.9) 

where the  s u b s c r i p t  

condi t ions .  

o i n d i c a t e s  its eva lua t ion  a t  free stream s t agna t ion  

Because of t h e  e l imina t ion  of the  c o e f f i c i e n t  of v i s c o s i t y  through 

t h e  transformation given by Eq. (3.21, t h e  two momentum equat ions ,  

(3.5) and (3.61, are e x p l i c i t l y  uncoupled f r o m  t he  energy equat ion.  

Thus Cheng's' forms of t h e  so lu t ions  f o r  v and ii are a v a i l a b l e .  
- 

3.2 Transformation of t h e  shock l a y e r  equat ions 

8,9,10 Again fol lowing Cheng , t he  shock l a y e r  equat ions are t r a n s -  

formed from t h e  (x,y) coord ina tes  t o  t h e  (x,$) Von Mises coord ina tes .  

With t h e  in t roduc t ion  of t h e  stream func t ion ,  $ , which is r e l a t e d  t o  

t h e  v e l o c i t y  components as 

Eq. (2.1) is then  i d e n t i c a l l y  s a t i s f i e d .  Equations (2 .2 )  through (2.41, 

wi th  t h e  use of Eq. (2.61, then become 

(3.10) 

(3.11) 

(3.12) 



16 

The no-slip boundary condi t ions  at t h e  w a l l ,  a good approximation i n  t h e  

case of cold walls, are 

$ = O :  u = O ,  H = H  
W 

The boundary condi t ions  a t  t h e  o u t e r  edge of t h e  shock l a y e r  are obta ined  

from Sect ion 2.3: 

J, = p,U_nZ': P =  

u =  

2 2  
P,U, s i n  B 

(3.13) 1 
The o u t e r  boundary condi t ion  f o r  H is t h e  "psuedo-jump" condi t ion ,  where 

(3.14) 4 p ~ 4 a T  dy 
00 i' 

is an  i n t e g r a l  across the  shock- t r ans i t i on  zone. 

With the  in t roduc t ion  of t h e  dimensionless  dependent v a r i a b l e s  

u = U/(U~COSB) 

0 = (H-H )/(H,-Hw) J 
W 

and t h e  independent v a r i a b l e s  

(3.15) 'I 
(3.16) 

Eqs. (3.10) through (3.13) can then  be t ransformed i n t o  a form s u i t a b l e  

f o r  t h e  c a l c u l a t i o n  of f l o w  over  (smooth) b l u n t  bodies." However, t h e  

s t a g n a t i o n  reg ion ,  which is t h e  ze ro th  o r d e r  term i n  a series expansion i n  
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5 

f o r  c a l c u l a t i o n s  around t h e  body. 

, m u s t  be cons idered  f irst ,  i n  order  t o  provide  i n i t i a l  information 

In  t h i s  paper ,  only t h e  s t agna t ion  reg ion  w i l l  be  d iscussed;  

i n  t h i s  reg ion  t h e  a p p l i c a t i o n  of the "psuedo-jump" condi t ion  and t h e  

o v e r a l l  iteration scheme can be i l l u s t r a t e d  simply. 

3.3 The s t a g n a t i o n  reg ion  

In t h e  stagnation reg ion ,  s i n 6  3 1, COSS % 5 and Z/a % 5 .  

Then, i n  t h e  lead ing  approximation t h e  fol lowing o rd ina ry  d i f f e r e n t i a l  

(3.16) 

(3.17) 

R 3 = q2/(p,U,=/2), and primes i n d i c a t e  d i f f e r e n t i a t i o n  wi th  r e s p e c t  
92 

where 

t o  5. 

The momentum equat ion  (3.16) is uncoupled f r o m  t h e  energy equa t ion  

(3.18) through t h e  use of  a l inear  v iscos i ty- tempera ture  l a w  and t h e  

n e g l e c t  of t h e  t a n g e n t i a l  p re s su re  g r a d i e n t  term. This  term is of o r d e r  

K2 and is not of  importance i n  t h e  K2 = O(1) or merged l a y e r  regime 

(For f u r t h e r  d i scuss ion  of t h i s  p o i n t ,  see Cheng.8) of flow. 

ob ta ined  by Cheng' is 

The s o l u t i o n  

(3.20) 
- 2 u = PrK < / ( 3 k )  

Hence, wi th  t h e  use of (3.20), t h e  f i n a l  form of t h e  shock l a y e r  energy 

equa t ion  and its boundary conriitioiiiils >ezczies 
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(3.21) 3 
The shock- t rans i t ion  zone energy equat ion ,  when s p e c i a l i z e d  t o  t h e  

s t agna t ion  reg ion ,  becomes,with D r i m e s  i n d i c a t i n g  d i f f e r e n t i a t i o n  wi th  

r e s p e c t  t o  rl 
- 

(3.22) 

10  
2 --2) /7 + Ft= ( 4 / 3 ) ( r  a E a / K  ) E(H-v  

0 0  

m-1 = 1, F(0) = O ( 1 )  

where t h e  shock- in te r face  is taken as loca ted  a t  T; = 0. Cheng's 

f o r  t h e  shock- t r ans i t i on  zone momentum equat ions  are 

- - -4;r/3 u = 1 -(1 - U2)e (3.23) 

and 

- -  - - 
where v*= v,,/(1-v4) and v, .. = E H ~ .  See Cheng8 f o r  d e t a i l s  of t h e  

approximate s o l u t i o n  f o r  v. 
- 

I n  terms of t h e  shock- t r ans i t i on  zone v a r i a b l e s ,  -A q2 i n  Eq. (3.21) 

i s  

tThe exac t  va lue  of t h e  cons t an t  of i n t e g r a t i o n  is n o t  important .  The 
- -  

cons tan t  could be f i x e d  by matching 

s o l u t i o n  a t  n=O or it could be e n t i r e l y  omit ted.  I n  both  cases, t h e  

normal ve loc i ty  and temperature  p r o f i l e s  are expec ted  t o  be d iscont inous  

a t  t h e  interface t o  o r d e r  E . (See Reference 8) .  I n  t h i s  paper ,  for  

s i m p l i c i t y ,  t h e  cons tan t  is omit ted.  

av/arl wi th  t h a t  of t h e  shock l a y e r  
- 

2 
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Since the  in tegrand  i n  Eq. (3.25) is  p o s i t i v e  and t h e  i n t e g r a t i o n  i s  

taken from t o  0 ,  is  a negative number, r ep resen t ing  a f u r t h e r  

mode of h e a t  loss bes ides  conduction a t  t h e  shock interface. 

The o v e r a l l  i t e ra t ion  scheme is as fol lows:  The parameters 

r a E a ,  E , K 2  and P r  are f i r s t  s p e c i f i e d .  We decouple Eq. (3.21) 
0 0  

f r o m  

f o r  

as a 

Eq. (3.22) by assuming var ious values  of 2 t o  ob ta in  t h e  s o l u t i o n  

O ( C ) .  From t h e s e  s o l u t i o n s ,  O ( 1 )  (and hence O ’ ( 1 ) )  is obta ined  

func t ion  of t h e  assumed values  of 

On t h e  o t h e r  hand, Eq. (3.22) may be decoupled from Eq. (3.21) by 

4 
2’ q 

- 
assuming var ious values  of O(1) i n  t h e  s o l u t i o n s  f o r  H. From t h e s e  

s o l u t i o n s  

of t h e  assumed values  of e(1) .  

s o l u t i o n  curves i n  t h e  

cons is t e n t  o v e r a l l  s o l u t i o n .  

can be ca l cu la t ed  from Eq. (3.25) and obtained as a func t ion  

The i n t e r s e c t i o n  of t h e  two “independent” 

- O ( 1 )  phase p lane  then  g ives  t h e  f i n a l  

Because of t h e  nonl inear i ty  of Eqs. (3.21) and (3.22),  a n a l y t i c a l  

so lu t ions  are not  expected. 

decoupled Eqs. (3.21) and (3.22) is a matter of choice.  

The technique of so lv ing  t h e  ind iv idua l  

They could be 

numerical ly  i n t e g r a t e d ,  s u b j e c t  t o  t h e i r  r e spec t ive  two-point boundary 

condi t ions .  However, he re  t h e i r  so lu t ions  w i l l  be  obtained by i t e r a t i o n .  

To proceed, it is assumed t h a t  t h e  right-hand s i d e s  of t h e  d i f f e r e n t i a l  

equat ions  i n  Eqs. (3.21) and (3.22) can be t r e a t e d  as known nonhomogenous 

terms. Upon applying t h e  respec t ive  boundary condi t ions ,  w e  ob ta in  f o r  

t h e  shock l a y e r  
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1/3c where z = k 

and 

(3.27) I 
is t h e  so lu t ion  f o r  t he  nonradia t ing  s t agna t ion  region shock layer. '  The 

i n t e g r a l  I ( z )  is  def ined by 

2 

(3.28) 
0 

which is r e l a t e d  t o  t h e  incomplete gamma funct ion  of o r d e r  1 / 3  and 

3 argument z . 
For t h e  shock- t rans i t ion  zone, w e  ob ta in  - 

n 

(3.29) 

where - 
n 

(3.30) 
m 

I n  Eq. (3.291, Q(l) is t h e  value of t h e  dimensionless  shock l a y e r  

en tha lpy  funct ion a t  the  i n t e r f a c e  5 = 1 (or  z = k which is 

assumed known. The shock- t r ans i t i on  zone v e l o c i t y ,  v , is i n  t h e  form 
- 

given by Eq. (3.24) and is  c o n s i s t e n t  wi th  t h e  assumed Q(1). 
- 

An a l t e r n a t e  form of Eq. (3.291, i n  terms - of T ,  can be obtained:  
n - 

-2 0 ' 4  (3.31) T = 1 - v -[1 - o(1 )  - J' e q ( n t )  do'le-' 
- 

0 
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(3.32) 

4. Resul t s  and Discussion 

A s  a n t i c i p a t e d  i n  Sec t ion  3.3, the i n t e r s e c t i o n  of t h e  shock l a y e r  

-R O ( 1 )  - q2 phase 

Each p o i n t  on t h e  

and shock- t rans i t ion  zone s o l u t i o n  curves i n  t h e  

p lane  would g ive  t h e  f i n a l  cons i s t en t  s o l u t i o n .  

r e spec t ive  solut ion curves is here  obtained by i t e r a t i o n ,  using t h e  

energy equat ions i n  t h e  form given by Eq. (3.26) and e i t h e r  (3.29) 

or (3.31). The calculations begin as fol lows:  f i rs t ,  the  parameters 

I' a Ea, K2 , E and Pr are fixed. Then t h e  r a d i a t i o n l e s s  shock l a y e r  

9 2 solut ion ( i . e .  f i x i n g  @(l)) corresponding t o  these  values  of  K , E , 
0 0  

and P r ,  is used t o  o b t a i n  i n  the shock- t rans i t ion  zone. Then 

T 
- 

i n  t h e  shock- t r ans i t i on  zone i s  obtained from Eq. (3.31) as accura t e ly  

as d e s i r e d  through i terat ion,  t h e  zeroth approximation used beinE t h e  

r a d i a t i o n l e s s  solution8910 for  'T. Thus q2 can be obtained from Eq. 

(3.25) for t h e  p a r t i c u l a r  value of Q(1); t h i s  corresponds t o  t h e  first 

circle i n  Figure 3. 

Eq. (3.16). The i t e r a t i o n  begins  by using t h e  r a d i a t i o n l e s s  s o l u t i o n ,  

B o  , as t h e  zero th  approximation i n  t h e  i n t e g r a l s  9, and 9,. 
6 is obta ined  t o  the  des i r ed  accuracy for  t h e  p a r t i c u l a r  value of 

4 
q2 used, and t h i s  y i e l d s  a new O ( 1 )  which corresponds t o  t h e  f i r s t  

squa re  i n  f i g u r e  3. 

o (1)  and t h e  v e r t i c a l  pa ths  ind ica t e  f i x e d  q2. Such a procedure 

-R 

The next  s t e p  is t o  use t h i s  value of i n  

Again, 

I n  t h i s  f igure  the  h o r i z o n t a l  pa ths  i n d i c a t e  f i x e d  

-R 

--a..--- pruuubca a + m i  pa th  i n  qy roach ing  t h e  f i n a l  c o n s i s t e n t  s o l u t i o n ,  as 
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is  d ic t a t ed  by phys ica l  reasoning f r o m  t h e  imp l i ca t ions  of such a 

procedure. 

The p a r t i c u l a r  values  of  parameters f o r  t h e  t r a j e c t o r y  shown i n  

2 t h e  phase plane of Figure 3 are I' a E a  = 100, K = 1, E = 0.1428 

(y  = 1.40) and P r  = 0.75. From Figure 1 w e  see t h a t  t h i s  combination 

of r a Ea and K2 fa l ls  i n  t h e  regime where r a d i a t i v e  emmision effects 

are of "order one". When c a l c u l a t i o n s  are Derformed i n  t h e  "weak 

r ad ia t ion"  regime, only a s i g n l e  v e r t i c a l  pa th  i n  t h e  

is necessary,  which corresponds t o  a small p e r t u r b a t i o n  away from t h e  

r a d i a t i o n l e s s  case. 

becomes the  dominant mode of energy t r a n s f e r ,  t h i s  regime m u s t  be 

0 0  

0 0  

-R O ( l )  - q2 plane  

Since for t h e  "s t rong r ad ia t ion"  regime, r a d i a t i o n  

considered sepa ra t e ly .  

t h e  order-one and weak r a d i a t i o n  cases, b u t  no t  t h e  s t r o n g  r a d i a t i o n  

The techniques descr ibed  he re  then  encompass both 

case. 

O f  p a r t i c u l a r  i n t e r e s t  are t h e  c o n t r i b u t i o n s  of t h e  var ious  modes 

of hea t  t r a n s f e r  t o  the  body su r face .  In  t h i s  d i s c u s s i o r  t h e  local 

s u r f a c e  hea t  t r a n s f e r  rates w i l l  be made dimensionless  with r e s e p c t  t o  

P,oUw(H,-H for a h ighly  cooled wal l  and a hypersonic  free 

stream) t o  g ive  t h e  c o e f f i c i e n t s  of h e a t  t r a n s f e r  

from t h e  r a d i a t i v e  h e a t  f l u x  t o  t h e  w a l l  are ob ta ined  by t h e  followinj? 

% 3  
(=P, Uw/2 

W 

CH. The c o n t r i b u t i o n s  

i n t e g r a l s :  Y S  W 

(4.1) 
4 4 - R*SL R,STZ = 1 ~ K ~ u T  dysL + I PK4UT dySTZ R - R  + q w  

0 YS 

The r a d i a t i v e  h e a t  f l u x  t o  t h e  w a l l  is  taken  as h a l f  o f  t h e  t o t a l  energy 

r a d i a t e d  from t h e  shock l a y e r  and t h e  shock- t r ans i t i on  zone. The t h i n  
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r a d i a t i n g  s l a b  approximation is  i m p l i c i t  i n  t h i s  cons idera t ion .  This  

would be consistent with t h e  th in- layer  approximations a l r eady  used i n  

t r e a t i n g  t h e  shock l a y e r  and shock- t rans i t ion  zone. I n  terms of t h e  

h e a t  t r a n s f e r  c o e f f i c i e n t  and of the  r e s p e c t i v e  variables used for t h e  

two l a y e r s ,  then: 

0 

(4.2) 

(4.3) 

0 

The form of t h e  absorp t ion  c o e f f i c i e n t  given by Eq. (3 .3)  shows its 

dependence on pressure .  I n  t h e  shock l a y e r  = 1 i n  t h e  s t a g n a t i o n  

region.  I n  t h e  shock- t rans i t ion  zone. p = ET/v. As with  t h e  5 term 

i n  t h e  momentum equat ion  (3.5),  t h e  con t r ibu t ion  of 

- -- 
-- 

cT/v does no t  

become important  u n t i l  t h e  reg ion  near  t h e  shock i n t e r f a c e  is approached, 
- 

where v = O ( E ) .  I n  gene ra l ,  because o f  t h i s  pressure dependence, it 

R is  expected t h a t  t h e  c o n t r i b u t i o n  t o  CH from t h e  shock l a y e r ,  # 

C Y T Z *  is more important  t han  t h a t  from the  shock t r a n s i t i o n  zone, 

2 However, for  decreas ing  K , t h e  shock l a y e r  t h i ckness ,  ys/= , 
dec reases  ( f o r  t h e  case of a co ld  w a l l )  while  t h e  shock t r a n s i t i o n  zone 

s t r e t c h e s  out .  I n  t h i s  case, 

i n  F i g u r e  4 for  rOaOEa = 10, E = 0.1428, P r  = 0.75, where CH is 

broken down i n t o  t h e  con t r ibu t ions  from t h e  two reg ions .  Since r a d i a t i v e  

. This is shown 

R 
C i 9 s T z  over takes  C Y L  

emission decreases  t h e  shock l a y e r  temperature,  and hence its g r a d i e n t ,  

t h e  convec t ive  h e a t  t r a n s f e r  c o e f f i c i e n t ,  C L ,  becomes lower than  i n  t h e  
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R t C  r a d i a t i o n l e s s  case C . The to t a l  h e a t  transfer c o e f f i c i e n t ,  CH , 
H- 

C is asymptotic t o  C z  a t  t h e  h ighe r  end of  K2 and asymptot ic  t o  CH 
V 

2 a t  t h e  lower end of K . Radia t ive  effects become n e g l i g i b l e  for  small 

K2 f o r  a f ixed  roaoEa , s i n c e  t h e  lower temperature  l e v e l  i n  t h i s  range 

of K2 

Figure 1). The effect  of changes i n  roaOEa on C F c  is shown i n  

Figure 5. 

pu t s  t h e  r a d i a t i v e  energy t r a n s f e r  i n  t h e  "weak" range,  (see 

The dimensionless en tha lpy  func t ion  a t  t h e  shock i n t e r f a c e ,  O ( 1 )  , 
i s  shown as a func t ion  of i n  Figure 6, and t h e  shock detachment 

d i s t a n c e ,  o r  t h e  th i ckness  of t h e  shock l a y e r ,  is  shown i n  Figure 7. 

Because the o v e r a l l  temperature  l e v e l  i n  t h e  shock l a y e r  decreases  f o r  

increas ing  I' a E a ,  t h e  shock l a y e r  t h i ckness  decreases  correspondingly.  

K 2  

0 0  

Some t y p i c a l  s t a g n a t i o n  r eg ion  p r o f i l e s  are shown i n  F igure  8 

f o r  t he  case of 

a t  t h e  shock i n t e r f a c e  is as expected i n  t h e  t h i n  shock l a y e r  treatment 

[see Footnote t o  Eq. (3.2411. 

and normal v e l o c i t y  p r o f i l e s  are i d e n t i c a l  t o  t h e  r a d i a t i o n l e s s  case 

i n  t h e i r  r e spec t ive  t ransformed plane.  

v e l o c i t y  d i f f e r s  from t h e  corresponding r a d i a t i o n l e s s  case i n  t h e  p h y s i c a l  

plane because o f  coord ina te  s t r e t c h i n g  only.  

d i f f e r s  from t h e  corresponding r a d i a t i o n l e s s  case because of  t h e  modi- 

f i c a t i o n s  upon H2 i n  a d d i t i o n  t o  coord ina te  s t r e t c h i n g .  These 

d i f f e rences  become more pronounced with i n c r e a s i n g  roaoca. The effects 

of r a d i a t i v e  cool ing  on t h e  temperature p r o f i l e  is  i l l u s t r a t e d .  

temperature p r o f i l e s  become less s t e e p  n e a r  t h e  wall and t h e  e n t i r e  

K2 = 1. The d i s c o n t i n u i t y  i n  t h e  temperature  p r o f i l e  

The e x p l i c i t  form of t h e  t a n g e n t i a l  

I n  p a r t i c u l a r ,  t h e  t a n g e n t i a l  

The normal v e l o c i t v  

- 

The 
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shock l a y e r  and shock- t r ans i t i on  zone decrease i n  th i ckness  wi th  

i n c r e a s i n g  importance of r a d i a t i o n .  

Throughout t h i s  paper ,  comparisons of t h e  p re sen t  s o l u t i o n s  have 

been made only with t h e  corresponding r a d i a t i o n l e s s  s o l u t i o n s .  

sons wi th  o t h e r  r a d i a t i v e  s o l u t i o n s  a t  t h e  h ighe r  Reynolds number range 

have not  been made. 

t h e  gas  p r o p e r t i e s ,  t h e  equat ion of state and t h e  r a d i a t i o n  model, such 

comparisons are not  found t o  be meaningful. 

Compari- 

Because of t h e  var ious  d i f f e r i n g  assumptions on 

Since  t h e  gas n e a r  t h e  co ld  w a l l  and i n  t h e  o u t e r  p o r t i o n  of t h e  

shock- t r ans i t i on  zone is r e l a t i v e l y  cool ,  r eabso rp t ion  e f f e c t s  would become 

important .  

hypersonic  flow, inc lud ing  reabsorp t ion  e f f e c t s ,  i s  under way. 

An ex tens ion  t o  t h e  corresponding low Reynolds number 
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Figure 2 .  Thin shock structure and shock layer notation. Schematic. 
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1 9 4 0 6  

P R O F  G N P A T T E R S O N  B 
I N S T I T U T E  FOR AEROSPACE 
S T U O I E S  
U N I V E R S I T Y  OF TORONTO 
TORONTO 5 CANADA 

P R O F  S S P E N N E R  
U N I V  O F  C A L I F O R h I A  
A T  S A N  O I E G O  
D E P A R T M E N T  O F  
AEROSPACE E N G I N E E R I N G  
L A  J O L L A  C A L I F O R N I A  

92037 

PROFESSOR T I N G  Y I  L I  B 
OEPT O F  AERO & 
A S T R O N A U T I C A L  ENGR 
OHIO S T A T E  U N I V E R S I T Y  
2036 N E I L  AVENUE 
COLUMBUS O H I O  

0 

PROFESSOR H C H U T T E L  A B  
OEPT O F  C H E M I C A L  E N G I N E E R  
MASSACHUSETTS I N S T I T U T E  
O F  TECHNOLOGY 
C A M B R I D G E  MASSACHUSETTS 

,42139 4321 

PROFESSOR W I L B E R T  L I C K  

CASE WEST U i l I v .  
C L  E V E L  A N  0 v U I1  I 0 

OR G L E N  P I P P E R T  B 
MASS I N S T  O F  TECHNOLOGY 
M I T L I N C O L N  L A B O R A T O R Y  
BOX 73 
L E X I N G T O N  M A S S A C H U S E T T S  

02173 

M3 C C HUCSON AB 
SAND I A CORPORA1 I O N  
S A N D I A  B A S E  
ALBUQUERQUE NEW M E X I C O  

i: 7 1 1 5 

R G JOROAN BCE 
OAK R I D G E  GASEOUS 
D I F F U S I O N  PL 
U N I O N  C A R B I D E  CORP 
N U C L E A R  D I V  
I' 0 BOX P 
13AK R I D G E  TENNESSEE 

P R O F  R F P R O B S T E I N  
A B C D F H I  
O E P T  O F  M E C H A N I C A L  E N G I N  
M A S S A C H U S E T T S  I N S T  OF 
TECHNOLOGY 
C A M B R I D G E  M A S S A C H U S E T T S  

02139 

P R O F  E L R E S L E R  A B C O H I  
GRADUATE SCHOOL OF 
A E R O N A U T I C A L  E N G I N E E R I N G  
C O R N E L L  U E t I V E R S I T Y  
I T H A C A  NEW YORK 

PROF M J L I G H T H I L L  
U N I V E R S I T Y  O F  LONOON 
LONOON E N G L A N D  

PROFESSOR C C L I N  ABOH 
M A S S A C H U S E T T S  I N S T I T U T E  
O F  TECHNOLOGY 
C A M B R I D G E  M A S S A C H U S E T T S  

u 2 1 3 Y  O H  ARTHUR K A N T R O W I T Z  
D I H C C T O R  B 
AVCO E V E R E T T  R E S E A R C H  
L A B O R A T O R Y  
2385  R E V E R E  B E A C H  PARKWAY 
E V E R E T T  MASSACHUSETTS 

0 2 1 4 9  

PROFESSOR MAEDER B 
D I V I S I O N  O F  E N G I N E E R I N G  
BROWN U N I V E R S I T Y  
P R U V I O E N C E  RHOOE I S L A N D  

02912 

1 4 8 5  

1 4 8 5  

OR A L F R E D  R I T T E R  A B G H I  
THERM A D V A N C E 0  R E S C H  I N C  
100 HUDSON C I R C L E  
I T H A C A  NEW VORK 

M I S S  MARY R U M I G  
T H t  HAND CORP 
1 7 0 0  C A I N  S T R E E I  
S A N T A  M O N I C A  C A L I F O R N I A  

) I  

PRCFESSOR K K A R A M C H E T I  B 
O E P T  OF A E R O N A U T I C A L  
E N G I N E E R I N G  
S T  ANFORO UN I VE R S  1 T Y 
S T A N F O R D  CAL I F O R N  1 A  

' 9 4 3 0 5  

OR J KULANOER 
LOCKHEEO MISS E S P A C E  
3 2 5 1  HANOVER A V E N U E  
P A L 0  A L T O  C A L I F O R N I A  

d ' t 3 0 4  

co Y04C 
OR F K MOORE 
D I R E C T O R  
T H E R M A L  E N G I N E E R I N G  D E P T  
2 0 8  UPSON H A L L  
C O R N E L L  U N I V E R S I T Y  
I T H A C A  NEW YORK 

14850 

OR P E T E R  R O S E  
A V C O  MFG C O R P O R A T I O N  
R E S E A R C H  L A B O R A T O R Y  
2 3 8 5  R E V E R E  B E A C H  PARKWAY 
E V E R E T T  M A S S A C H U S E T T S  

02149 

A R K U H L T H A U  D I R E C T O R  B 
R E S E A R C H  L A B O R A T O R I E S  FOR 
T H E  E N G I N E E R I N G  S C I E N C E S  
THORNTON H A L L  
U N I V E R S I T Y  OF V I R G I N I A  
C H A R L O T T E S V I L L E  V I R G I N I A  

2 2 Y 0 3  
OR H T N A G A M A T S U  A B  
G t N E R A L  E L E C T R I C  COMPANY 
R E S  E DEV C E N T E R  K 1 
P 0 BOX 8 
SCHENECTAOY NEW YORK 

12301 PROF E V L A I T O N E  B F G H I  
U N I V E R S I T Y  OF C A L I F O R N I A  
B E R K E L E Y  C A L I F O K N I A  

94720 OR Y O S H I N A R I  NAKAGAWA 
NCAR 
U N I V E R S I T Y  O F  COLORADO 
B O U L D E R  COLORADO 

8 0 3 0 4  

S I N C L A I R  M S C A L A  MGR A B  
S P A C E  S C I E N C E S  L A B  
G E N E R A L  E L E C T R I C  CO 
P 0 BOX 8553 
P H  I L  A O E L P H  I A  P E N N S Y L V A N I A  

19101 

P R O F E S S O R  W R S E A R S  
A B C O F I  
4927 P A C I F I C A  D R I V E  
S A N  O I E G O  C A L I F O R N I A  

9210') 

PROFESSORS.HARVEY L A M  
F O R R E S T A L  RESEARCH C E N T E R  
OEPT OF AERO E N G I N  t 
M E C H A N l C A L  S C I E N C E  
P R I N C E T O N  U N I V E R S I T Y  
P R I N C E T O N  NEW J E R S E Y  

o t 3 5 4 1  

OH F R A N K  L A N E  A B F  
G E N E R A L  A P P L I E D  
S C I E N C E  L A B  
M E R R I C K  E STEWART A V E N U E S  
WESTBURY LONG I S L A N D  N Y 

11 5 9 0  

PRCFESSOR L L E E S  
G U G G E N H E I M  AERONAUTCL L A B  
C A L I F O R N I A  I N S T  O F  T E C H  
PASADENA C A L I F O R N I A  

91109 

PROFESSOR R M N E R E M  
D E P T  AERO E A S T R O  E N G I N  
O H I O  S T A T E  U N I V E R S I T Y  
COLUMBUS O H I O  

43210 

OR E E S E C H L E R  A B C D E F G H I  
E X E C U T I V E  O F F I C  FOR AERO 
C A L I F O R N I A  I N S T I T U T E  OF 
TECHNOLOGY 
P A S A D E N A  C A L I F O R N I A  

Y 1 1 0 9  

PROFESSOR A H S H A P I R O  B O H  
D E P A R T  O F  M E C H A N I C A L  
E N G I N E E R  I N G  
M A S S A C H U S E T T S  I N S T  O F  
TECHNOLOGY 
C A M B R I D G E  M A S S A C H U S E T T S  

0 2 1 3 Y  

PROFESSOR M L E S S E N  H E A D  
DEPARTMENT OF M E C H A N I C A L  
E N G I N E E R I N G  
THE U N I V  O F  R O C H E S T t H  
R l V t H  C A P P U S  S T A T I O N  
HOCHESTER NEW YORK 

1 4 6 2 7  

P R O F  A K O P P E N H E I M  A B  
D I V I S I O N  O F  M E C H A N I C A L  
E N G I N E E R  I N G  
U N I V E R S I T Y  O F  C A L I F O R N I A  
B E R K E L E Y  CALIFORNIA 

Y 4 7 2 0  

OR M A R T I N  P SHERMAN 
H I G H  A L T I T U D E  
A E H O O Y N A M I C S  L A B O R A I O R Y  
G E N E R A L  E L E C T R I C  
M I S S I L E S  E S P A C E  D I V I S I O N  
K I N G  O F  P R U S S I A  P E N N  

1'3406 

MR P H I L I P  L E V l N t  
2 P C d E L L  ROAD 
OANVEHS MASSACHUSETTS 

I1Y23 PROFESSOR P A 1  
I N S T I T U T E  FOR 
F L U I D  M E C H A N I C S  A N D  

O R  S L L t V Y  O I R t C l O R  B A P P L I E D  M A T H E M A T I C S  
M I D k E S T  R E S C H  I N S T I T U T E  U N I V E R S I T Y  O F  M A R Y L A N D  
P H Y S I C S  AND M A T H E M A T I C S  C O L L E G E  PARK M A R Y L A N D  
D l  V I S I O N  2 0 7 4 0  
4 2 5  V O L K E R  dOULEVARD 
K A N S A S  C I T Y  M I S S O U R I  

6'1 110 

P R O F E S S O R  P SHERMAN B 
A E R O N A U T I C A L  E N G I N  O E P l  
U N I V E R S I T Y  O F  M I C H I G A N  
ANN ARBOR M I C H I G A N  

48108 
OR ADRIAN PALLONE 

201 LOWELL S T R E E T  
AVCO M I S S I L E  S Y S T E M S  O I V  

Y I L M I N G T O N  M A S S A C H U S E T T S  
0 1 8 8 7  



OR J 0 S H R E V E  J R  BH 
S A N O I A  C O R P O R A T I O N  
S A N O I A  B A S E  
ALBUQUERQUE NEW M E X I C O  

01115 

PROF E M SPARROW 

M E C H A N I C A L  E N G I N E E R I N G  
U N I V  O F  M I N N E S O T A  
M I N N L A P O L I S  M I N N E S O T A  

~ D E P A R T M E N T  O F  

55455 

B A R B A R A  S P E N C E  
T E C H N I C A L  L I B  A B  
AVCO E V E R E T T  R E S E A R C H  L A B  
2385  R E V E R E  8 E A C H  PARKWAY 
E V E R E T T  M A S S A C H U S E T T S  

32149 

P R G F  H B S T I L L Y E L L  CHMN 8 
O E P T  OF A E R O N A U T I C A L  A N 0  
A S T R O N A U T I C A L  E N G I N E E R I N G  
U N I V k R S I T Y  O F  I L L I N O I S  
U R B A N A  I L L I N O I S  

i 
41803  

P R O F E S S O R  R G STONER 
D E P A R T M E N T  O F  P H Y S I C S  
A R I Z O N A  S T A T E  U N I V E R S I T Y  
T E M P E  A R I Z O N A  

35281 

OR L T A L B O T  A B 1  
U N I V E R S I T Y  O F  C A L I F O R N I A  
D E P A R T M E N T  O F  E N G I N E E R I N G  
B E R K E L E Y  C A L I F O R N I A  

34720 

OR H N THOMAS B 
U N I V E R S I T Y  O F  COLORADO 
B O U L U E R  COLORADO 

80302  

M J THOMPSON A B O H  
O E F t N S E  R E S E A R C H  L A B  
U N I V E R S I T Y  O F  T E X A S  
P C BOX BO29 
A U S T I N  T E X A S  

7 8 7 1 2  

OR S C T R A U G O T T  
M A I L  H-3033 
T H E  M A R T I N  COMPANY 
B A L T I M O R E  M A R Y L A N D  

1 1 2 0 3  

OR L T R I L L I N G  B 
O E P T  O F  A E R O N A U T I C S  A N 0  
A S T R O N A U T  I C S  
M A S S A C H U S E T T S  I N S T  O F  
T E C H N O L O G Y  

I C A M B R I D G E  M A S S A C H U S E T T S  
U2139 

P R O F  M I L T O N  V A N  D Y K E  B 
O E P T  O F  A E R O N A U T I C A L  
E N G I N E E R I N G  
S T A N F O R D  U N I V E R S I T Y  
S T A N F O R D  C A L I F O R N I A  

9 4 3 0 5  

P R O F E S S O R  J K V E N N A R D  B C D  
O E P T  O F  C I V I L  E N G I N E E R I N G  
S T A N D A R D  U N I V E R S I T Y  
S T A N F O R D  C A L I F O R N I A  

9 4 3 0 5  

P R O F  W A L T E R  G V I N C E N T 1  B 
D E P T  O F  A E R O N A U T I C S  
A N 0  A S T R O N A U T I C S  
S T A N F O R D  U N I V E R S I T Y  
S T A N F O R D  C A L I F O R N I A  

9 4 3 0 5  

OR H V I N O K U R  
A E R O S P A C E  S C I E N C E S  L A B  
L O C K H E E O  MISS t S P A C E  CO 
3251 H A N O V E R  A V E N U E  
P A L 0  A L T U  C A L I F O R N I A  

7 4 3 0 4  

P R C F  R V I S K A N T A  
O E P A R T M E N T  O F  

P U R D U E  U N I V E R S I T Y  
L A F A Y E T T E  I N D I A N A  

MECHAMICAL ENGINEERING 

4 7 9 c 7  

PROFESSOR P P WEGENER B 
O E P T  OF E N G I N E E R I N G  AND 
A P P L I E D  S C I E N C E S  
Y A L E  U N I V E R S I T Y  
NEW H A V E N  C O N N E C T I C U T  

06520  

C H A R L E S  A W H I T N E Y  
S M I T H S O N I A N  A S T R O P H Y S I C A L  
O B S E R V A T O R Y  
HARVARO C O L L E G E  O B S E R V T Y  
HARVARO U N I V E R S I T Y  
CAM B R  I DG E MASS ACHUSE T T S  

0 2 1 3 8  

OR K H W I L S O N  
AEROSPACE S C I E N C E S  L A B  
L O C K H E E D  M I S S I L E S  AND 
SPACE COMPANY 
3251 HANOVER S T R E E T  
P A L O  A L T O  C A L I F O R N I A  

9 4 3 0 4  

OR W H WURSTER 
C O R N E L L  AERO L A B O R A T O R Y  
B U F F A L O  NEW YORK 

24221  

OR S L Z I E B E R G  H E A D  A B  
GAS D Y N A M I C S  S E C T  
F L U I D  M E C H A N I C S  O E P T  
B L D G  8 1 ROOM 1320  
AEROSPACE C O R P O R A T I O N  
S A N  B E R N A R O I N O  C A L I F O R N I A  

92402  

PROFESSOR F L W I C K Y  A B C F H  
D E P A R T M E N T  OF P H Y S I C S  
C A L I F O R N I A  I N S T I T U T E  O F  
TECHNOLOGY 
P A S A D E N A  C A L I F O R N I A  

9 1 1 0 9  

AERO OEPARTMENT B 
I M P E R I A L  C O L L E G E  
LONOON S W 7 E N G L A N D  

B A T T E L L E  OEFENDER 
I N F O R M A T I O N  
A N A L Y S I S  CENTER B 
B A T T E L L E  M E M O R I A L  I N S T  
505  K I N G  AVENUE 
COLUMBUS O H I O  

43201  

C H I E F  O F  AERODYNAMICS B 
AVCO M I S S I L E  S Y S T E M S  D I V  
201  L O W E L L  S T R E E T  
W I L M I N G T O N  M A S S A C H U S E T T S  

01887 

C O M M A N D I N G  O F F I C E R  ABCDGH 
NROTC & N A V A L  
A O M I N I S T R A T I V E  U N I T  
M A S S  I N S T  OF TECHNOLOGY 
C A M B R I D G E  M A S S A C H U S E T T S  

0 2 1 3 9  

CONOUCTRON CORPC, 
3475  PLYMOUTH R O I L :  
P 0 BOX 6 1 4  
ANN ARBOR M I C H I G A N  

48107  

N O R T H  AMEH A V I A T I O N  I N C  B 
S P A C E  & I N F O R M A T I O N  
S Y S T E M S  D I V  
12214  LAKEWOOD B L V O  
OOWNEY C A L I F O R N I A  

90240  

S C h O O L  O F  A P P L I t O  M A T H  
I N D I A N A  U N I V E R S I T Y  
A B C O F G H I  
B L O O M I N G T O N  I N D I A N A  

47401  

S U P E R S O N I C  G A S O Y N A M I C S  
R E S  L A B  t) 
O E P T  O F  M E C H A N I C A L  
E N G I N E E R I N G  
MC G I L L  U N I V E R S I T Y  
M O N T R E A L  12 QUEBEC CANADA 

T E C H N I C A L  R E P O R T S  CTR B 
B E L L  T E L E P H O N E  L A B S  I N C  
W H I P P A N Y  L A B O R A T O R I E S  
W H I P P A N Y  NEW J E R S E Y  

07981  

GOVERNMENT A G E N C I E S  

A F A P L  I A P R C )  
A B  
W R I G H T  P A T T E R S O N  A F B  OHIO 

45433  

AFOSR I S R E M I  A B C D E F G  
14CO W I L S O N  B O U L E V A R D  
A R L I N G T O N  VA 

2 2 2 0 9  

A R L  I A R N )  B U I L D I N G  4 5 0  
A B D H  W R I G H T  P A T T E R S O N  A F B  OHIO 

45433  

A D V A N C E 0  R E S H  P R O J  AGENCY 
R E S E A R C H  & D E V E L O P M E N T  
F I E L D  U N I T  
A T T N  MR TOM BRUNDAGE B 
A P C  I 4 6  BOX 2 7 1  
S A N  F R A N C I S C O  C A L I F O R N I A  

96346  

MR H J A L L E N  
N A S A  
AMES R E S E A R C H  CTR N A S A  
MT V I E W  C A L I F O R N I A  

94040  

OR B S B A L O W I N  
N A S A  
AMES H E S t A R C H  CTR N A S A  
M T  V I E W  C A L I F O R N I A  

94040  

OR F 0 B E N N E T T  A B  
E X T E R I O R  B A L L I S T I C S  L A B  
B A L L I S T I C S  R E S E A R C H  L A B S  
A B E R D E E N  PROV GROUND MD 

t O I T D R  A B C D E F G H I  
A P P L I E D  M E C H A N I C S  R E V I E W  
SOUTHWEST R E S E A R C H  I N S T  
85CO C U L E B R A  R O A D  
S A N  A N T O N I O  T E X A S  

21005  

78206  

E N G I N E E R I N G  O I V I S I O N  B 
C A L I F O R N I A  I N S T I T U T E  O F  
TECHNOLOGY 
P A S A D E N A  C A L I F O R N I A  

91100  

C H I E F  O F  R E S E A R C H  & 
D E V t L O P M E N T  
O F F I C E  O F  C H I E F  O F  S T A F F  
A B O E F H  
D E P A R T M E N T  O F  T H E  ARMY 
T H E  P E N T A G O N  
W A S H I N G T O N  0 C 

E N G I N E E R I N G  L I B R A R Y  B 
U N I V E R S I T Y  O F  SOUTHERN 
C A L I F O R N I A  
B O X  7 7 9 2 9  
L O S  ANGELES C A L I F O R N I A  

90007  

L O C K H E E O  R I S S I L E S  & S P A C E  
COMPANY 
TE$!:ACAL I N F O R M A T I O N  C T R  

3251  hANOVER S T R E E T  
P A L O  A L T O  C A L I F O R N I A  

%"YL. .. 

94301  

N I E L S E N  E N G I N E E R I N G  & 
R E S E A R C H  COMPANY BOG 
P 0 BOX 595 
L O S  A L T O S  C A L I F O R N I A  

94022  

C H I E F  OF N A V A L  R E S E A R C H  
D E P A R T M E N T  O F  T H E  N A V Y  
A T T N  CODE 421 A B 1  
W A S H I N G T O N  0 C 

20.560 

C H I E F  OF N A V A L  K E S C H  d 3  
D E P A R T M E N T  O F  THE N A V Y  
A T T N  CODE 438  A B C O E F G H I  
W A S H I N G T O N  0 C 

7 t 1 1 6 0  

C H I E F  OF N A V A L  & € S E A R C H  
O E P A K l M t N T  O F  THE N A V Y  
A T T N  CODE 461 A B D F G H I  
W A S H I N G T O N  0 C 

20363  



COMMANDER 
N A V A L  A I R  SYSTEMS COMMAND 
U E P A R T M E N I  OF T H E  N A V Y  
A T T N  COOE A I R  3 0 3 2  8 
W A S H I N G T O N  0 C 

2 b 3 6 0  

COFMANOEK 
N A V A L  ORDNANCE L A B O R A T O R Y  
A T T N  A E R O P H Y S I C S  D I V I S I O N  
A B O b  
W H I T E  O A K  
S I L V E R  S P R I N G  MO 

2 L 9 1 0  

COMMANUER 
N A V A L  ORDNANCE L A B O K A T O R Y  
A T T N  L I E R A R I A N  A B C D E F G H I  
W H I T E  OAK 
S I L V E R  S P R I N G  MO 
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